Big data voi auttaa leukemiapotilaita ja pikkukeskosia

Aalto-yliopisto on mukana tutkimushankkeessa, jossa kehitetään terveydenhoitoon uusia datalähtöisiä teknologioita.

  • data

    Laskennalliset verkkomallinnusalustat voivat mahdollistaa yksilöllisten lääkehoitojen löytämisen.

    ()

Miten jo olemassa olevia tietomassoja voitaisiin hyödyntää tehokkaasti eri sairauksien hoidossa?

Tähän kysymykseen etsitään ratkaisuja Suomen Akatemian rahoittamassa Datalähtöinen päätöksenteko digitaalisessa terveydenhuollossa – D4Health -hankkeessa, jossa ovat mukana Aalto-yliopiston tietotekniikan laitos ja sähkötekniikan ja automaation laitos, Helsingin yliopiston ja Aallon yhteinen HIIT-tutkimusyksikkö sekä Suomen molekyylilääketieteen instituutti FIMM.

Hankkeen rahoitus on 1,2 miljoonaa euroa. Sen tavoite on kehittää menetelmiä suurten lääketieteellisten aineistojen yhdistämiseksi ja ennustemallien muodostamiseksi sekä luoda mukautuvia käyttöliittymiä, jotka auttavat lääkäreitä diagnoosien tekemisessä ja hoidon suunnittelussa.

Lääketieteen asiantuntijat ovat projektissa tärkeässä roolissa.

– Teemme tiivistä yhteistyötä HUS:n kanssa, hankkeesta vastaava professori Juho Rousu korostaa.

– Tavoitteenamme on hyödyntää potilaan digitalisoitua sairauskertomushistoriaa kuvaamaan taudin ilmiasua ja tarkastella sitä potilaan geneettistä taustaa vasten. Näin voimme saada entistä tarkemman ja yksilöllisemmän käsityksen taudista, kertoo HUS-konsernin tutkimusjohtaja Ari Lindqvist.

Kolme pilottiprojektia

Hankkeessa on mukana kolme pilottia: pikkukeskoset, leukemia ja keuhkoahtaumatauti.

– Pikkukeskosten osalta tavoitteena on ennustaa taudin etenemistä aivan ensimmäisistä herkistä signaaleista lähtien ja rakentaa ennustemalleja näiden löydösten pohjalta. Päättelykyky ja nopeus paranevat tekoälyn ansiosta, Lindqvist selittää.

Leukemiasta ja keuhkoahtaumataudista on valmiina muutamaa tuhatta ihmistä koskevat genomimittaukset, joiden avulla voidaan selvittää geenien toimintaa ja mahdollisia mutaatioita sekä lääkeaineiden vaikutusta geenien toimintaan.

– Tietyntyyppiset geenivariantit saattavat sopia paremmin yhteen tietyn lääkeaineen kanssa, Rousu sanoo.

– Laskennalliset verkkomallinnusalustat voivat mahdollistaa yksilöllisten lääkehoitojen löytämisen vaikeahoitoisille leukemiapotilaille, kun käytämme hyväksi heidän henkilökohtaisia genomiprofiilejaan, kertoo professori Tero Aittokallio FIMM:stä. Hän vastaa leukemiapilotista yhdessä FIMM:n, HIIT:n ja HUS:n tutkijoiden kanssa.

Sairauksiin liittyviä vakiotietoja käytetään mallien ja ohjelmistojen kehittämiseen ja testaamiseen. Datan yksityisyys turvataan ottamalla siitä ensimmäisenä tunnistetiedot pois.

Arvoisa kommentoija, kunnioitathan hyviä tapoja. Terävä kritiikki on sallittua. Henkilökohtaiset tai kansanryhmien solvaukset ja ihmisarvon loukkaukset poistamme. Voimasanojen käyttöä tai alatyyliä kohtaan meillä on nollatoleranssi. Emme voi myöskään julkaista ulkopuolisia linkkejä. Pysy asiassa.